
Influence of vacuum annealing on the dispersion of thin double niobium-copper films deposited onto oxide materials
Author(s) -
І. І. Gab,
Т. V. Stetsyuk,
D. B. Shakhnin
Publication year - 2020
Publication title -
fìzika ì hìmìâ tverdogo tìla
Language(s) - English
Resource type - Journals
eISSN - 2309-8589
pISSN - 1729-4428
DOI - 10.15330/pcss.21.2.332-337
Subject(s) - materials science , annealing (glass) , niobium , copper , cubic zirconia , oxide , ceramic , thin film , metallurgy , composite material , nanotechnology
The kinetics of dispersion of thin niobium-copper films deposited onto leucosapphire, alumina and zirconia ceramics and annealed in vacuum at temperatures up to 1100 °C with different exposition times at each temperature (from 5 up to 20 min) was studied. The double films consisted of two layers: the first metallization layer was 150 nm niobium nanofilm deposited onto the oxide surface, and the second copper layer 1,5 mm thick deposited over the first one as a solder was used for joining of metallized oxide samples. It was found that these films remain rather dense during heating up to 1050 °C; and after annealing at 1100 °C they decompose into individual fragments covering about 80% the area of the ceramic substrates even after annealing during 20 min. The kinetic curves for the dispersion of these films were plotted.