z-logo
open-access-imgOpen Access
Lu-V-{Ge, Sn} ternary systems
Author(s) -
L. Romaka,
M. Konyk,
Yu. Stadnyk,
V.V. Romaka,
R. Serkiz
Publication year - 2019
Publication title -
physics and chemistry of solid state
Language(s) - English
Resource type - Journals
eISSN - 2309-8589
pISSN - 1729-4428
DOI - 10.15330/pcss.20.1.76
Subject(s) - germanide , ternary operation , solid solution , crystallography , isothermal process , structure type , phase diagram , ternary numeral system , group (periodic table) , materials science , phase (matter) , chemistry , crystal structure , thermodynamics , metallurgy , germanium , physics , organic chemistry , silicon , computer science , programming language
The isothermal sections of the phase diagrams of the Lu–V–Ge and Lu-V-Sn ternary systems were constructed at 870 K over the whole concentration range using X-ray diffraction and EPM analyses. In the Lu-V-Ge system a formation of the substitutional solid solution Lu5Ge3-xVx based on the Lu5Ge3binary compound (Mn5Si3 structure type) was found up to 6 at. % V. Insertion of the V atoms in the structure of the LuGe2 binary germanide (ZrSi2structure type, up to 5 aт. % V) results in the formation of the LuV0,15Ge2 ternary phase (CeNiSi2 structure type, space group Cmcm, a=0.40210(4),b=1.5661(1), c=0.38876(3) nm), which corresponds to the limit composition of the interstitial solid solution LuVxGe2. The interaction between the elements in the Lu-V-Sn system results in the formation of one ternary compound LuV6Sn6 (SmMn6Sn6-type, space group P6/mmm, a=0.5503(2), c=0.9171(4) nm) at investigated temperature.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom