
Interaction of the components in the Gd-Mn-Sn ternary system at 873 and 673 K
Author(s) -
L. Romaka,
Yu. Stadnyk,
V.V. Romaka,
M. Konyk,
R. Serkiz
Publication year - 2018
Publication title -
physics and chemistry of solid state
Language(s) - English
Resource type - Journals
eISSN - 2309-8589
pISSN - 1729-4428
DOI - 10.15330/pcss.19.1.60-65
Subject(s) - ternary operation , solid solution , ternary numeral system , crystallography , structure type , chemistry , microstructure , group (periodic table) , type (biology) , binary system , materials science , analytical chemistry (journal) , binary number , crystal structure , metallurgy , mathematics , computer science , ecology , organic chemistry , chromatography , biology , programming language , arithmetic
The interaction of the components in the Gd-Mn-Sn ternary system was studied using the methods of X-ray and microstructure analyses, in the whole concentration range. The phase diagrams of the Gd-Mn-Sn system were constructed at 873 and 673 K. At both temperature of investigation the Gd-Mn-Sn system is characterized by existence of two ternary compounds: GdMn6Sn6 (MgFe6Ge6 structure type, space group P6/mmm) and Gd4Mn4Sn7 (Zr4Co4Ge7 structure type, space group I4/mmm). The formation of the interstitial solid solution GdMnхSn2 based on GdSn2 (ZrSi2-type) binary compound was found up to 10 at. % Mn at 873 K and 673 K. The existence of the substitutional solid solution based on GdMn2 (MgCu2-type) was observed up to 5 at.% Sn and 3 at. % Sn at 873 K and 673 K, respectively.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom