z-logo
open-access-imgOpen Access
Some classes of dispersible dcsl-graphs
Author(s) -
J. Jinto,
K. A. Germina,
P. Shaini
Publication year - 2018
Publication title -
carpathian mathematical publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.9.2.128-133
Subject(s) - combinatorics , injective function , mathematics , graph , integer (computer science) , physics , computer science , programming language
A distance compatible set labeling (dcsl) of a connected graph $G$ is an injective set assignment $f : V(G) \rightarrow 2^{X},$ $X$ being a non empty ground set, such that the corresponding induced function $f^{\oplus} :E(G) \rightarrow 2^{X}\setminus \{\phi\}$ given by $f^{\oplus}(uv)= f(u)\oplus f(v)$ satisfies $ |f^{\oplus}(uv)| = k_{(u,v)}^{f}d_{G}(u,v) $ for every pair of distinct vertices $u, v \in V(G),$ where $d_{G}(u,v)$ denotes the path distance between $u$ and $v$ and $k_{(u,v)}^{f}$ is a constant, not necessarily an integer, depending on the pair of vertices $u,v$ chosen. $G$ is distance compatible set labeled (dcsl) graph if it admits a dcsl. A dcsl $f$ of a $(p, q)$-graph $G$ is dispersive if the constants of proportionality $k^f_{(u,v)}$ with respect to $f, u \neq v, u, v \in  V(G)$ are all distinct and $G$ is dispersible if it admits a dispersive dcsl. In this paper we proved that all paths and graphs with diameter less than or equal to $2$ are dispersible.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom