Superextensions of three-element semigroups
Author(s) -
Volodymyr Gavrylkiv
Publication year - 2017
Publication title -
carpathian mathematical publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.9.1.28-36
Subject(s) - mathematics , combinatorics , lambda , isomorphism (crystallography) , binary number , element (criminal law) , binary operation , discrete mathematics , arithmetic , physics , crystallography , crystal structure , quantum mechanics , chemistry , political science , law
A family $\mathcal{A}$ of non-empty subsets of a set $X$ is called an upfamily if for each set $A\in\mathcal{A}$ any set $B\supset A$ belongs to $\mathcal{A}$. An upfamily $\mathcal L$ of subsets of $X$ is said to be linked if $A\cap B\ne\emptyset$ for all $A,B\in\mathcal L$. A linked upfamily $\mathcal M$ of subsets of $X$ is maximal linked if $\mathcal M$ coincides with each linked upfamily $\mathcal L$ on $X$ that contains $\mathcal M$. The superextension $\lambda(X)$ consists of all maximal linked upfamilies on $X$. Any associative binary operation $* : X\times X \to X$ can be extended to an associative binary operation $\circ: \lambda(X)\times\lambda(X)\to\lambda(X)$ by the formula $\mathcal L\circ\mathcal M=\Big\langle\bigcup_{a\in L}a*M_a:L\in\mathcal L,\;\{M_a\}_{a\in L}\subset\mathcal M\Big\rangle$ for maximal linked upfamilies $\mathcal{L}, \mathcal{M}\in\lambda(X)$. In the paper we describe superextensions of all three-element semigroups up to isomorphism.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom