z-logo
open-access-imgOpen Access
Fourier coefficients associated with the Riemann zeta-function
Author(s) -
Yu. V. Basiuk,
S. I. Tarasyuk
Publication year - 2016
Publication title -
karpatsʹkì matematičnì publìkacìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.8.1.16-20
Subject(s) - riemann zeta function , mathematics , riemann hypothesis , fourier series , critical line , riemann xi function , prime zeta function , arithmetic zeta function , kernel (algebra) , series (stratigraphy) , mathematical analysis , pure mathematics , physics , thermodynamics , paleontology , biology
We study the Riemann zeta-function $\zeta(s)$ by a Fourier series method. The summation of $\log|\zeta(s)|$ with the kernel $1/|s|^{6}$ on the critical line $\mathrm{Re}\; s = \frac{1}{2}$ is the main result of our investigation. Also we obtain a new restatement of the Riemann Hypothesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here