
Convergence in $L^p[0,2\pi]$-metric of logarithmic derivative and angular $\upsilon$-density for zeros of entire function of slowly growth
Author(s) -
M. R. Mostova,
M. V. Zabolotskyj
Publication year - 2015
Publication title -
karpatsʹkì matematičnì publìkacìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.7.2.209-214
Subject(s) - mathematics , logarithm , zero (linguistics) , logarithmic derivative , pi , entire function , convergence (economics) , order (exchange) , function (biology) , metric (unit) , derivative (finance) , mathematical analysis , geometry , philosophy , linguistics , operations management , finance , evolutionary biology , financial economics , economics , biology , economic growth
The subclass of a zero order entire function $f$ is pointed out for which the existence of angular $\upsilon$-density for zeros of entire function of zero order is equivalent to convergence in $L^p[0,2\pi]$-metric of its logarithmic derivative.