On a necessary condition for $L^p$ $(0 < p < 1)$-convergence (upper boundedness) of trigonometric series
Author(s) -
Xh. Z. Krasniqi
Publication year - 2015
Publication title -
carpathian mathematical publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.7.1.83-90
Subject(s) - mathematics , convergence (economics) , lambda , series (stratigraphy) , trigonometry , trigonometric functions , upper and lower bounds , trigonometric series , combinatorics , mathematical analysis , geometry , physics , quantum mechanics , paleontology , economics , biology , economic growth
In this paper we prove that the condition $\sum_{k=\left[\frac{n}{2}\right] }^{2n}\frac{\lambda _{k}(p)}{(|n-k|+1)^{2-p}}=o(1)\, \left(=O(1) \right),$ is a necessary condition for the $L^{p} (0<p<1)$-convergence (upper boundedness) of a trigonometric series. Precisely, the results extend some results of A. S. Belov.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom