z-logo
open-access-imgOpen Access
On a necessary condition for $L^p$ $(0 < p < 1)$-convergence (upper boundedness) of trigonometric series
Author(s) -
Xhevat Z. Krasniqi
Publication year - 2015
Publication title -
karpatsʹkì matematičnì publìkacìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.7.1.83-90
Subject(s) - mathematics , convergence (economics) , series (stratigraphy) , trigonometric series , lambda , trigonometry , trigonometric functions , upper and lower bounds , combinatorics , pure mathematics , mathematical analysis , geometry , physics , paleontology , optics , economics , biology , economic growth
In this paper we prove that the condition $\sum_{k=\left[\frac{n}{2}\right] }^{2n}\frac{\lambda _{k}(p)}{(|n-k|+1)^{2-p}}=o(1)\, \left(=O(1) \right),$ is a necessary condition for the $L^{p} (0<p<1)$-convergence (upper boundedness) of a trigonometric series. Precisely, the results extend some results of A. S. Belov.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here