z-logo
open-access-imgOpen Access
Finite homomorphic images of Bezout duo-domains
Author(s) -
O. S. SOROKIN
Publication year - 2014
Publication title -
carpathian mathematical publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.6.2.360-366
Subject(s) - mathematics , injective function , homomorphic encryption , divisor (algebraic geometry) , ring (chemistry) , noncommutative geometry , pure mathematics , dimension (graph theory) , range (aeronautics) , element (criminal law) , global dimension , discrete mathematics , computer science , encryption , chemistry , materials science , organic chemistry , political science , law , composite material , operating system
It is proved that for a quasi-duo Bezout ring of stable range 1 the duo-ring condition is equivalent to being an elementary divisor ring. As an application of this result a couple of useful properties are obtained for finite homomorphic images of Bezout duo-domains: they are coherent morphic rings, all injective modules over them are flat, their weak global dimension is either 0 or infinity. Moreover, we introduce the notion of square-free element in noncommutative case and it is shown that they are adequate elements of Bezout duo-domains. In addition, we are going to prove that these elements are elements of almost stable range 1, as well as necessary and sufficient conditions for being square-free element are found in terms of regularity, Jacobson semisimplicity, and boundness of weak global dimension of finite homomorphic images of Bezout duo-domains.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom