A Study on $\phi$-Symmetric $\tau$-curvature tensor in $N(k)$-contact metric manifold
Author(s) -
Gurupadavva Ingalahalli,
C. S. Bagewadi
Publication year - 2014
Publication title -
carpathian mathematical publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.6.2.203-211
Subject(s) - metric tensor , metric (unit) , riemann curvature tensor , manifold (fluid mechanics) , curvature , mathematics , tensor (intrinsic definition) , mathematical physics , ricci curvature , physics , ricci decomposition , combinatorics , pure mathematics , mathematical analysis , geometry , operations management , engineering , economics , geodesic , mechanical engineering
In this paper we study $\tau$-curvature tensor in $N(k)$-contact metric manifold. We study $\tau$-$\phi$-recurrent,$\tau$-$\phi$-symmetric and globally $\tau$-$\phi$-symmetric $N(k)$-contact metric manifold.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom