z-logo
open-access-imgOpen Access
A Study on $\phi$-Symmetric $\tau$-curvature tensor in $N(k)$-contact metric manifold
Author(s) -
Gurupadavva Ingalahalli,
C. S. Bagewadi
Publication year - 2014
Publication title -
carpathian mathematical publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.6.2.203-211
Subject(s) - metric tensor , metric (unit) , riemann curvature tensor , manifold (fluid mechanics) , curvature , mathematics , tensor (intrinsic definition) , mathematical physics , ricci curvature , physics , ricci decomposition , combinatorics , pure mathematics , mathematical analysis , geometry , operations management , engineering , economics , geodesic , mechanical engineering
In this paper we study $\tau$-curvature tensor in $N(k)$-contact metric manifold. We study $\tau$-$\phi$-recurrent,$\tau$-$\phi$-symmetric and globally $\tau$-$\phi$-symmetric $N(k)$-contact metric manifold.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom