
A Study on $\phi$-Symmetric $\tau$-curvature tensor in $N(k)$-contact metric manifold
Author(s) -
Gurupadavva Ingalahalli,
C. S. Bagewadi
Publication year - 2014
Publication title -
karpatsʹkì matematičnì publìkacìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.6.2.203-211
Subject(s) - mathematics , metric (unit) , metric tensor , manifold (fluid mechanics) , curvature , riemann curvature tensor , ricci curvature , tensor (intrinsic definition) , mathematical physics , combinatorics , mathematical analysis , pure mathematics , geometry , mechanical engineering , operations management , engineering , economics , geodesic
In this paper we study $\tau$-curvature tensor in $N(k)$-contact metric manifold. We study $\tau$-$\phi$-recurrent,$\tau$-$\phi$-symmetric and globally $\tau$-$\phi$-symmetric $N(k)$-contact metric manifold.