
$(\delta, \gamma)$-Dunkl Lipschitz functions in the space $\mathrm{L}^{2}(\mathbb{R}, |x|^{2\alpha+1}dx)$
Author(s) -
Mohamed El Hamma,
Hind Lahlali,
Radouan Daher
Publication year - 2014
Publication title -
karpatsʹkì matematičnì publìkacìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.6.1.161-165
Subject(s) - lipschitz continuity , mathematics , space (punctuation) , alpha (finance) , combinatorics , translation (biology) , pure mathematics , statistics , chemistry , computer science , psychometrics , construct validity , biochemistry , messenger rna , gene , operating system
Using a generalized Dunkl translation, we obtain an analog of Theorem 5.2 in Younis' paper [2] for the Dunkl transform for functions satisfying the $(\delta, \gamma)$-Dunkl Lipschitz condition in the space $\mathrm{L}^{2}(\mathbb{R}, |x|^{2\alpha+1}dx)$.}