
Approximation of the periodical functions of high smoothness by the rightangled Fourier sums
Author(s) -
О. О. Новiков,
O. G. Rovenska
Publication year - 2013
Publication title -
karpatsʹkì matematičnì publìkacìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.5.1.102-109
Subject(s) - mathematics , smoothness , fourier series , fourier transform , pure mathematics , mathematical analysis
We obtain asymptotic equalities for upper bounds of the deviations of the right-angled Fourier sums taken over classes of periodical functions of two variables of high smoothness. These equalities in corresponding cases guarantee the solvability of the Kolmogorov–Nikol’skii problem for the right-angled Fourier sums on the specified classes of functions.