z-logo
open-access-imgOpen Access
Lipschitz symmetric functions on Banach spaces with symmetric bases
Author(s) -
Mariia Martsinkiv,
S.I. Vasylyshyn,
Taras Vasylyshyn,
Andriy Zagorodnyuk
Publication year - 2021
Publication title -
carpathian mathematical publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.13.3.727-733
Subject(s) - mathematics , lipschitz continuity , banach space , pure mathematics , symmetric function , space (punctuation) , combinatorics , philosophy , linguistics
We investigate Lipschitz symmetric functions on a Banach space $X$ with a symmetric basis. We consider power symmetric polynomials on $\ell_1$ and show that they are Lipschitz on the unbounded subset consisting of vectors $x\in \ell_1$ such that $|x_n|\le 1.$ Using functions $\max$ and $\min$ and tropical polynomials of several variables, we constructed a large family of Lipschitz symmetric functions on the Banach space $c_0$ which can be described as a semiring of compositions of tropical polynomials over $c_0$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom