z-logo
open-access-imgOpen Access
Asymmetric circular graph with Hosoya index and negative continued fractions
Author(s) -
Takao Komatsu
Publication year - 2021
Publication title -
karpatsʹkì matematičnì publìkacìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.13.3.608-618
Subject(s) - mathematics , combinatorics , graph , fraction (chemistry) , discrete mathematics , organic chemistry , chemistry
It has been known that the Hosoya index of caterpillar graph can be calculated as the numerator of the simple continued fraction. Recently in [MATCH Commun. Math. Comput. Chem. 2020, 84 (2), 399-428], the author introduces a more general graph called caterpillar-bond graph and shows that its Hosoya index can be calculated as the numerator of the general continued fraction. In this paper, we show how the Hosoya index of the graph with non-uniform ring structure can be calculated from the negative continued fraction. We also give the relation between some radial graphs and multidimensional continued fractions in the sense of the Hosoya index.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here