
Gradient almost Ricci solitons on multiply warped product manifolds
Author(s) -
Seçkin Günsen,
Leyla Onat
Publication year - 2021
Publication title -
karpatsʹkì matematičnì publìkacìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.13.2.386-394
Subject(s) - mathematics , nabla symbol , manifold (fluid mechanics) , einstein manifold , einstein , conformal map , rigidity (electromagnetism) , product (mathematics) , mathematical physics , ricci curvature , base (topology) , mathematical analysis , pure mathematics , combinatorics , physics , geometry , curvature , quantum mechanics , mechanical engineering , engineering , omega
In this paper, we investigate multiply warped product manifold \[M =B\times_{b_1} F_1\times_{b_2} F_2\times_{b_3} \ldots \times_{b_m} F_m\] as a gradient almost Ricci soliton. Taking $b_i=b$ for $1\leq i \leq m$ lets us to deduce that potential field depends on $B$. With this idea we also get a rigidity result and show that base is a generalized quasi-Einstein manifold if $\nabla b$ is conformal.