z-logo
open-access-imgOpen Access
Bases in finite groups of small order
Author(s) -
Тарас Банах,
Volodymyr Gavrylkiv
Publication year - 2021
Publication title -
carpathian mathematical publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.13.1.149-159
Subject(s) - mathematics , abelian group , cardinality (data modeling) , combinatorics , order (exchange) , basis (linear algebra) , group (periodic table) , finite group , discrete mathematics , geometry , physics , computer science , economics , data mining , finance , quantum mechanics
A subset $B$ of a group $G$ is called a basis of $G$ if each element $g\in G$ can be written as $g=ab$ for some elements $a,b\in B$. The smallest cardinality $|B|$ of a basis $B\subseteq G$ is called the basis size of $G$ and is denoted by $r[G]$. We prove that each finite group $G$ has $r[G]>\sqrt{|G|}$. If $G$ is Abelian, then $r[G]\ge \sqrt{2|G|-|G|/|G_2|}$, where $G_2=\{g\in G:g^{-1} = g\}$. Also we calculate the basis sizes of all Abelian groups of order $\le 60$ and all non-Abelian groups of order $\le 40$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom