z-logo
open-access-imgOpen Access
Spectral approximations of strongly degenerate elliptic differential operators
Author(s) -
M.I. Dmytryshyn,
Oleh Lopushansky
Publication year - 2019
Publication title -
karpatsʹkì matematičnì publìkacìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.11.1.48-53
Subject(s) - mathematics , elliptic operator , linear subspace , bounded function , eigenvalues and eigenvectors , mathematical analysis , degenerate energy levels , differential operator , pure mathematics , physics , quantum mechanics
We establish analytical estimates of spectral approximations errors for strongly degenerate elliptic differential operators in the Lebesgue space $L_q(\Omega)$ on a bounded domain $\Omega$. Elliptic operators have coefficients with strong degeneration near boundary. Their spectrum consists of isolated eigenvalues of finite multiplicity and the linear span of the associated eigenvectors is dense in $L_q(\Omega)$. The received results are based on an appropriate generalization of Bernstein-Jackson inequalities with explicitly calculated constants for quasi-normalized Besov-type approximation spaces which are associated with the given elliptic operator. The approximation spaces are determined by the functional $E\left(t,u\right)$, which characterizes the shortest distance from an arbitrary function ${u\in L_q(\Omega)}$ to the closed linear span of spectral subspaces of the given operator, corresponding to the eigenvalues such that not larger than fixed ${t>0}$. Such linear span of spectral subspaces coincides with the subspace of entire analytic functions of exponential type not larger than ${t>0}$. The approximation functional $E\left(t,u\right)$ in our cases plays a similar role as the modulus of smoothness in the functions theory.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here