z-logo
open-access-imgOpen Access
Asymptotics of the entire functions with $\upsilon$-density of zeros along the logarithmic spirals
Author(s) -
M.V. Zabolotskyj,
Yu.V. Basiuk
Publication year - 2019
Publication title -
carpathian mathematical publications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.11.1.26-32
Subject(s) - mathematics , logarithm , order (exchange) , entire function , inverse , zero (linguistics) , logarithmic derivative , function (biology) , logarithmic spiral , combinatorics , mathematical physics , mathematical analysis , geometry , linguistics , philosophy , finance , evolutionary biology , economics , biology
Let $\upsilon$ be the growth function such that $r\upsilon'(r)/\upsilon (r) \to 0$ as $r \to +\infty$, $l_\varphi^c = \{z=te^{i(\varphi+c \ln t)}, 1 \leqslant t < +\infty\}$ be the logarithmic spiral, $f$ be the entire function of zero order. The asymptotics of $\ln f(re^{i(\theta +c \ln r)})$ along ordinary logarithmic spirals $l_\theta^c$ of the function $f$ with $\upsilon$-density of zeros along $l_\varphi^c$ outside the $C_0$-set is found. The inverse statement is true just in case zeros of $f$ are placed on the finite logarithmic spirals system $\Gamma_m = \bigcup_{j=0}^m l_{\theta_j}^c$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom