z-logo
open-access-imgOpen Access
Asymptotics of the entire functions with $\upsilon$-density of zeros along the logarithmic spirals
Author(s) -
M. V. Zabolotskyj,
Yu. V. Basiuk
Publication year - 2019
Publication title -
karpatsʹkì matematičnì publìkacìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.11.1.26-32
Subject(s) - mathematics , logarithm , order (exchange) , entire function , inverse , zero (linguistics) , logarithmic derivative , function (biology) , logarithmic spiral , combinatorics , mathematical physics , mathematical analysis , geometry , linguistics , philosophy , finance , evolutionary biology , economics , biology
Let $\upsilon$ be the growth function such that $r\upsilon'(r)/\upsilon (r) \to 0$ as $r \to +\infty$, $l_\varphi^c = \{z=te^{i(\varphi+c \ln t)}, 1 \leqslant t < +\infty\}$ be the logarithmic spiral, $f$ be the entire function of zero order. The asymptotics of $\ln f(re^{i(\theta +c \ln r)})$ along ordinary logarithmic spirals $l_\theta^c$ of the function $f$ with $\upsilon$-density of zeros along $l_\varphi^c$ outside the $C_0$-set is found. The inverse statement is true just in case zeros of $f$ are placed on the finite logarithmic spirals system $\Gamma_m = \bigcup_{j=0}^m l_{\theta_j}^c$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here