z-logo
open-access-imgOpen Access
On an approach to the construction of the Friedrichs and Neumann-Krein extensions of nonnegative linear relations
Author(s) -
О. Г. Сторож
Publication year - 2018
Publication title -
karpatsʹkì matematičnì publìkacìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.63
H-Index - 4
eISSN - 2313-0210
pISSN - 2075-9827
DOI - 10.15330/cmp.10.2.387-394
Subject(s) - mathematics , hilbert space , extension (predicate logic) , neumann boundary condition , subspace topology , von neumann architecture , boundary (topology) , operator (biology) , space (punctuation) , pure mathematics , domain (mathematical analysis) , linear map , boundary value problem , relation (database) , mathematical analysis , combinatorics , biochemistry , chemistry , linguistics , philosophy , repressor , computer science , transcription factor , gene , programming language , database
Let $L_{0}$ be a closed linear nonnegative (probably, positively defined) relation ("multivalued operator") in a complex Hilbert space $H$. In terms of the so called boundary value spaces (boundary triples) and corresponding Weyl functions and Kochubei-Strauss characteristic ones, the Friedrichs (hard) and Neumann-Krein (soft) extensions of $L_{0}$ are constructed. It should be noted that every nonnegative linear relation $L_{0}$ in a Hilbert space $H$ has two extremal nonnegative selfadjoint extensions: the Friedrichs extension $L_{F}$ and the Neumann-Krein extension $L_{K},$ satisfying the following property: $$(\forall \varepsilon > 0) (L_{F} + \varepsilon 1)^{-1} \leq (\widetilde{L} + \varepsilon 1)^{-1} \leq (L_{K} + \varepsilon 1)^{-1}$$ in the set of all nonnegative selfadjoint subspace extensions $\widetilde{L}$ of $L_{0}.$ The boundary triple approach to the extension theory was initiated by F.S. Rofe-Beketov, M.L. and V.I. Gorbachuk, A.N. Kochubei, V.A. Mikhailets, V.O. Dercach, M.N. Malamud, Yu. M. Arlinskii and other mathematicians. In addition, it is showed that the construction of the mentioned extensions may be realized in a more simple way under the assumption that initial relation is a positively defined one.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here