z-logo
open-access-imgOpen Access
Composition based on alicyclic copolymide and polyethylene terephthalate
Author(s) -
М. B. Umerzakova,
R.B. Sarieva,
Asylbek Yespenbetov,
Zh. Kainarbayeva
Publication year - 2022
Publication title -
chemical bulletin of kazakh national university
Language(s) - English
Resource type - Journals
eISSN - 2312-7554
pISSN - 1563-0331
DOI - 10.15328/cb1248
Subject(s) - materials science , polyethylene terephthalate , polymer , compatibility (geochemistry) , composite number , polyethylene , alicyclic compound , polymer chemistry , composite material , polyurethane , fourier transform infrared spectroscopy , chemical engineering , polyester , hydrogen bond , molecule , organic chemistry , chemistry , engineering
The addition of polymers such as polyethylene terephthalate, polycarbonate and polyurethane to another high molecular weight compound often provides improvement of properties of initial polymerfilms. These compounds can be successfully applied for obtaining of composite films based on polyimides. In the present work, conditions of making polymer composite films with arylalicyclic structured copolyimides and influence of polyethylene terephthalate on them were studied. It was found that, addition of component from 0.5 to 2 wt.% provides retaining of the polymers’ compatibility in the composite. Films formed from solutions of these compositions are transparent, brittleness of the material is not observed and there were little changes in elasticity compared with original copolyimide film. FTIR studies showed that the formation of these polymer blends leads to the interaction of functional groups of the polymers with hydrogen bonds, which determine the blend components compatibility. It has been found that, upon additional heat treatment of the films no more than 250°C, intermolecular crosslinking partially occurs with formation of an oxygen bridge between the amide acids of copolyimide and the added component. Such crosslinking provides increase of heat resistance and strength of the film. It should be noted that, for carrying out extensive research, it is preferable to use a simple method of mechanical mixing for components.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom