
Drag Reduction by Application of Different Shape Designs in a Sport Utility Vehicle
Author(s) -
Omer Ali Elsayed,
Ashraf Ali Omar,
Ali Asghar Asgharian Jeddi,
Saad El Hessni,
Fatima Zahra Hachimy
Publication year - 2021
Publication title -
international journal of automotive and mechanical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.311
H-Index - 25
eISSN - 2229-8649
pISSN - 2180-1606
DOI - 10.15282/ijame.18.3.2021.03.0680
Subject(s) - drag , wake , aerodynamics , parasitic drag , aerodynamic drag , fluent , reduction (mathematics) , vortex , flow separation , flow (mathematics) , mechanics , flow control (data) , computational fluid dynamics , structural engineering , aerospace engineering , engineering , boundary layer , physics , geometry , mathematics , telecommunications
Road vehicles drag is a direct consequence of a large wake area generated behind. This area is created owing to the vehicle shape, which is determined by the class, functional and aesthetic of the vehicle. Aerodynamic characteristics are a ramification and not the reason for the vehicle architecture. To enhance pressure recovery in the wake region, hence reduce drag, three different passive flow control techniques were applied to sport-utility-vehicle (SUV). A three-dimensional SUV was designed in CATIA, and a numerical flow simulation was conducted using Ansys-Fluent to evaluate the aerodynamic effectiveness of the proposed flow control approaches. A closed rectangular flap as an add-on device modifies the wake vortex system topology, enhances vortex merging, and increases base pressure which leads to a drag reduction of 15.87%. The perforated roof surface layer was used to delay flow separation. The measured base pressure values indicate a higher-pressure recovery, which globally reflected in a drag reduction of 19.82%. Finally, air guided through side rams was used as steady blowing. A steady passive air jet introduced at the core of the longitudinal trailing vortices leads to a confined wake area. The net effects appear in a global increase in the base pressure values and the pronounced drag reduction of 22.67%.