
Prediction of Hyperelastic Material Properties of Nafion117 and Nafion/ZrO2 Nano-Composite Membrane
Author(s) -
Fulufhelo Ṋemavhola,
Rudzani Sigwadi
Publication year - 2019
Publication title -
international journal of automotive and mechanical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.311
H-Index - 25
eISSN - 2229-8649
pISSN - 2180-1606
DOI - 10.15282/ijame.16.2.2019.5.0492
Subject(s) - nafion , materials science , hyperelastic material , composite material , constitutive equation , nano , membrane , finite element method , composite number , ogden , structural engineering , chemistry , electrochemistry , engineering , biochemistry , electrode
This paper presents constitutive laws suitable for the prediction of mechanical behaviour of nano-composite membrane compared with the commercial membrane Nafion®117. The uniaxial tensile data of commercial Nafion®117 and Nafion®/ Zr-150 nano-composite membrane utilised for fitting hyperelastic models was determined experimentally. Several material models on mechanical behaviour of nano-composite and commercial Nafion® 117 membrane material was fitted to determined accuracy. In order to observe yield and fracture behaviour, the com-mercial Nafion®117 and Nafion®/ Zr-150 nano-composite membranes were loaded in uniaxial direction at a constant strain rate. To obtain the optimal material constants form six different material models considered in this study, the OriginLab® version 9 was used and the Leven-berg-Marquardt (M) optimization logarithm. Hyperplastic material models including Mooney-Rivlin, Yeoh, Ogden, Humphrey, Martins and Veronda-Westmann were selected to use in an inverse method to fit the experimental uniaxial data of nano-composite material. The hyper-plastic material parameters could then be used to simulate material behaviour of nano mem-brane using finite element analysis (FEA) technique. The procedure discussed in this paper could be used to accurately determine the constitutive parameters of various constitutive models of Polymer Nafion presented.