z-logo
open-access-imgOpen Access
BIODEGRADABLE NONWOVEN ACTIVATED POLYESTER WITH CHITOSAN: POTENTIAL APPLICATION IN THE COSMETIC INDUSTRY
Author(s) -
Karolina GzyraJagieła,
Monika Owczarek,
Monika Szkopiecka,
Sylwia Jagodzińska,
Marzena Dymel,
Patrycja Kudra-Miros,
Michał Kudra
Publication year - 2020
Publication title -
progress on chemistry and application of chitin and its derivatives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.181
H-Index - 10
ISSN - 1896-5644
DOI - 10.15259/pcacd.25.007
Subject(s) - chitosan , polyester , biodegradation , materials science , pulp and paper industry , polymer , textile , coating , wax , cosmetic industry , compost , fourier transform infrared spectroscopy , chemical engineering , cosmetics , chemistry , organic chemistry , composite material , waste management , engineering
Textile products enriched with natural substances, e.g. hyaluronic acid, plant hydrolates, collagen and chitosan, may find wide application in cosmetics because of increasing consumer interest in natural products. Furthermore, in view of global environmental pollution, products that are produced through biochemical changes as a result of composting are sought. This makes it possible to enter such designed cosmetic products into the scheme of the currently desired circular economy. Compostable textiles are an ecological alternative to product backlogs and polluting the environment in the form of post-consumer waste. Therefore, this research work developed a technology for applying natural substances on a biodegradable polyester fibrous substrate. This study developed the optimal composition of a mixture consisting of natural substances with properties applicable to the cosmetic industry, for applications such as cosmetic masks to improve the appearance of the skin. The composition of active substances that have beneficial effects on the skin, e.g. moisturizing, regenerating, antibacterial and caring, was determined. The mixture was effectively applied on a spunbound nonwoven substrate of made from aliphatic-aromatic copolyester by impregnation. The employed polymer degraded in a compost environment and its modifiers additionally supported this process. The unique composition of the applied coating layer consisted of a mixture of sodium hyaluronate, collagen, bitter orange blossom hydrolate (Neroli) and chitosan lactate. The coated nonwoven fabric was subjected to physical, mechanical, microbiological as well as chemical purity and structural tests (Fourier transform infrared spectroscopy and scanning electron microscopy) and degree of degradation in a compost environment was assessed on the basis of its weight loss.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom