REVIEW OF CURRENT RESEARCH ON CHITOSAN AS A RAW MATERIAL IN THREE-DIMENSIONAL PRINTING TECHNOLOGY IN BIOMEDICAL APPLICATIONS
Author(s) -
Szymon Mania,
Adrianna BanachKopeć,
Robert Tylingo
Publication year - 2020
Publication title -
progress on chemistry and application of chitin and its derivatives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.181
H-Index - 10
ISSN - 1896-5644
DOI - 10.15259/pcacd.25.003
Subject(s) - stereolithography , chitosan , 3d printing , nanotechnology , biomaterial , tissue engineering , materials science , selective laser sintering , 3d bioprinting , biomedical engineering , computer science , process engineering , engineering , sintering , chemical engineering , composite material
Three-dimensional (3D) biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative solutions in the biomedical sector, including drug delivery systems, disease modelling and tissue and organ engineering. Due to its remarkable and promising biological and structural properties, chitosan has been widely studied for decades in several potential applications in the biomedical field. However, tools in the form of 3D printers have created new possibilities for the production of chitosan models, implants and scaffolds for cell cultures that are much more precise than existing ones. The article presents current achievements related to the possibility of using chitosan to create new materials for 3D printing in the form of chitosan bioinks, filaments, resins and powders dedicated for bioprinting, fused deposition modelling, stereolithography/digital light processing and selective laser sintering methods, respectively
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom