z-logo
open-access-imgOpen Access
Spurious regulatory connections dictate the expression‐fitness landscape of translation factors
Author(s) -
Lalanne JeanBenoît,
Parker Darren J,
Li GeneWei
Publication year - 2021
Publication title -
molecular systems biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.523
H-Index - 148
ISSN - 1744-4292
DOI - 10.15252/msb.202110302
Subject(s) - library science , gene technology , oak ridge national laboratory , biology , computer science , physics , microbiology and biotechnology , nuclear physics
Abstract During steady‐state cell growth, individual enzymatic fluxes can be directly inferred from growth rate by mass conservation, but the inverse problem remains unsolved. Perturbing the flux and expression of a single enzyme could have pleiotropic effects that may or may not dominate the impact on cell fitness. Here, we quantitatively dissect the molecular and global responses to varied expression of translation termination factors (peptide release factors, RFs) in the bacterium Bacillus subtilis . While endogenous RF expression maximizes proliferation, deviations in expression lead to unexpected distal regulatory responses that dictate fitness reduction. Molecularly, RF depletion causes expression imbalance at specific operons, which activates master regulators and detrimentally overrides the transcriptome. Through these spurious connections, RF abundances are thus entrenched by focal points within the regulatory network, in one case located at a single stop codon. Such regulatory entrenchment suggests that predictive bottom‐up models of expression‐fitness landscapes will require near‐exhaustive characterization of parts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here