
Bayesian modeling reveals metabolite‐dependent ultrasensitivity in the cyanobacterial circadian clock
Author(s) -
Hong Lu,
Lavrentovich Danylo O,
Chavan Archana,
Leypunskiy Eugene,
Li Eileen,
Matthews Charles,
LiWang Andy,
Rust Michael J,
Dinner Aaron R
Publication year - 2020
Publication title -
molecular systems biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.523
H-Index - 148
ISSN - 1744-4292
DOI - 10.15252/msb.20199355
Subject(s) - library science , environmental ethics , biology , computer science , philosophy
Mathematical models can enable a predictive understanding of mechanism in cell biology by quantitatively describing complex networks of interactions, but such models are often poorly constrained by available data. Owing to its relative biochemical simplicity, the core circadian oscillator in Synechococcus elongatus has become a prototypical system for studying how collective dynamics emerge from molecular interactions. The oscillator consists of only three proteins, KaiA, KaiB, and KaiC, and near‐24‐h cycles of KaiC phosphorylation can be reconstituted in vitro . Here, we formulate a molecularly detailed but mechanistically naive model of the KaiA—KaiC subsystem and fit it directly to experimental data within a Bayesian parameter estimation framework. Analysis of the fits consistently reveals an ultrasensitive response for KaiC phosphorylation as a function of KaiA concentration, which we confirm experimentally. This ultrasensitivity primarily results from the differential affinity of KaiA for competing nucleotide‐bound states of KaiC. We argue that the ultrasensitive stimulus–response relation likely plays an important role in metabolic compensation by suppressing premature phosphorylation at nighttime.