z-logo
open-access-imgOpen Access
Antisense transcription‐dependent chromatin signature modulates sense transcript dynamics
Author(s) -
Brown Thomas,
Howe Françoise S,
Murray Struan C,
Wouters Meredith,
Lorenz Philipp,
Seward Emily,
Rata Scott,
Angel Andrew,
Mellor Jane
Publication year - 2018
Publication title -
molecular systems biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.523
H-Index - 148
ISSN - 1744-4292
DOI - 10.15252/msb.20178007
Subject(s) - library science , classics , history , computer science
Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription‐associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA ‐ FISH , we observed changes in sense transcript distributions in nuclei and cytoplasm as antisense transcript levels were altered. To determine the mechanistic differences underlying these distributions, we developed a mathematical framework describing transcription from initiation to transcript degradation. At GAL 1 , high levels of antisense transcription alter sense transcription dynamics, reducing rates of transcript production and processing, while increasing transcript stability. This relationship with transcript stability is also observed as a genome‐wide association. Establishing the antisense transcription‐associated chromatin signature through disruption of the Set3C histone deacetylase activity is sufficient to similarly change these rates even in the absence of antisense transcription. Thus, antisense transcription alters sense transcription dynamics in a chromatin‐dependent manner.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here