Premium
Kinesin‐2 motors adapt their stepping behavior for processive transport on axonemes and microtubules
Author(s) -
Stepp Willi L,
Merck Georg,
MuellerPlanitz Felix,
Ökten Zeynep
Publication year - 2017
Publication title -
embo reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.584
H-Index - 184
eISSN - 1469-3178
pISSN - 1469-221X
DOI - 10.15252/embr.201744097
Subject(s) - physics , library science , computer science
Two structurally distinct filamentous tracks, namely singlet microtubules in the cytoplasm and axonemes in the cilium, serve as railroads for long‐range transport processes in vivo . In all organisms studied so far, the kinesin‐2 family is essential for long‐range transport on axonemes. Intriguingly, in higher eukaryotes, kinesin‐2 has been adapted to work on microtubules in the cytoplasm as well. Here, we show that heterodimeric kinesin‐2 motors distinguish between axonemes and microtubules. Unlike canonical kinesin‐1, kinesin‐2 takes directional, off‐axis steps on microtubules, but it resumes a straight path when walking on the axonemes. The inherent ability of kinesin‐2 to side‐track on the microtubule lattice restricts the motor to one side of the doublet microtubule in axonemes. The mechanistic features revealed here provide a molecular explanation for the previously observed partitioning of oppositely moving intraflagellar transport trains to the A‐ and B‐tubules of the same doublet microtubule. Our results offer first mechanistic insights into why nature may have co‐evolved the heterodimeric kinesin‐2 with the ciliary machinery to work on the specialized axonemal surface for two‐way traffic.