z-logo
Premium
Chromatin determinants impart camptothecin sensitivity
Author(s) -
Puddu Fabio,
Salguero Israel,
Herzog Mareike,
Geisler Nicola J,
Costanzo Vincenzo,
Jackson Stephen P
Publication year - 2017
Publication title -
embo reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.584
H-Index - 184
eISSN - 1469-3178
pISSN - 1469-221X
DOI - 10.15252/embr.201643560
Subject(s) - camptothecin , chromatin , topoisomerase , biology , microbiology and biotechnology , dna replication , histone , genetics , acetylation , dna , gene , biochemistry
Camptothecin‐induced locking of topoisomerase 1 on DNA generates a physical barrier to replication fork progression and creates topological stress. By allowing replisome rotation, absence of the Tof1/Csm3 complex promotes the conversion of impending topological stress to DNA catenation and causes camptothecin hypersensitivity. Through synthetic viability screening, we discovered that histone H4 K16 deacetylation drives the sensitivity of yeast cells to camptothecin and that inactivation of this pathway by mutating H4 K16 or the genes SIR 1‐4 suppresses much of the hypersensitivity of tof1∆ strains towards this agent. We show that disruption of rDNA or telomeric silencing does not mediate camptothecin resistance but that disruption of Sir1‐dependent chromatin domains is sufficient to suppress camptothecin sensitivity in wild‐type and tof1∆ cells. We suggest that topoisomerase 1 inhibition in proximity of these domains causes topological stress that leads to DNA hypercatenation, especially in the absence of the Tof1/Csm3 complex. Finally, we provide evidence of the evolutionarily conservation of this mechanism.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here