Premium
New frontiers: discovering cilia‐independent functions of cilia proteins
Author(s) -
Vertii Anastassiia,
Bright Alison,
Delaval Benedicte,
Hehnly Heidi,
Doxsey Stephen
Publication year - 2015
Publication title -
embo reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.584
H-Index - 184
eISSN - 1469-3178
pISSN - 1469-221X
DOI - 10.15252/embr.201540632
Subject(s) - medical school , library science , motile cilium , medicine , gerontology , medical education , biology , cilium , computer science , genetics
In most vertebrates, mitotic spindles and primary cilia arise from a common origin, the centrosome. In non‐cycling cells, the centrosome is the template for primary cilia assembly and, thus, is crucial for their associated sensory and signaling functions. During mitosis, the duplicated centrosomes mature into spindle poles, which orchestrate mitotic spindle assembly, chromosome segregation, and orientation of the cell division axis. Intriguingly, both cilia and spindle poles are centrosome‐based, functionally distinct structures that require the action of microtubule‐mediated, motor‐driven transport for their assembly. Cilia proteins have been found at non‐cilia sites, where they have distinct functions, illustrating a diverse and growing list of cellular processes and structures that utilize cilia proteins for crucial functions. In this review, we discuss cilia‐independent functions of cilia proteins and re‐evaluate their potential contributions to “cilia” disorders.