Premium
p97 and p47 function in membrane tethering in cooperation with FTCD during mitotic Golgi reassembly
Author(s) -
Kaneko Yayoi,
Shimoda Kyohei,
Ayala Rafael,
Goto Yukina,
Panico Silvia,
Zhang Xiaodong,
Kondo Hisao
Publication year - 2021
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.15252/embj.2020105853
Subject(s) - biology , golgi apparatus , tethering , mitosis , microbiology and biotechnology , function (biology) , endoplasmic reticulum
p97ATPase‐mediated membrane fusion is required for the biogenesis of the Golgi complex. p97 and its cofactor p47 function in soluble N ‐ethylmaleimide‐sensitive factor (NSF) attachment protein receptor (SNARE) priming, but the tethering complex for p97/p47‐mediated membrane fusion remains unknown. In this study, we identified formiminotransferase cyclodeaminase (FTCD) as a novel p47‐binding protein. FTCD mainly localizes to the Golgi complex and binds to either p47 or p97 via its association with their polyglutamate motifs. FTCD functions in p97/p47‐mediated Golgi reassembly at mitosis in vivo and in vitro via its binding to p47 and to p97. We also showed that FTCD, p47, and p97 form a big FTCD‐p97/p47‐FTCD tethering complex. In vivo tethering assay revealed that FTCD that was designed to localize to mitochondria caused mitochondria aggregation at mitosis by forming a complex with endogenous p97 and p47, which support a role for FTCD in tethering biological membranes in cooperation with the p97/p47 complex. Therefore, FTCD is thought to act as a tethering factor by forming the FTCD‐p97/p47‐FTCD complex in p97/p47‐mediated Golgi membrane fusion.