z-logo
Premium
PTENε suppresses tumor metastasis through regulation of filopodia formation
Author(s) -
Zhang Qiaoling,
Liang Hui,
Zhao Xuyang,
Zheng Lin,
Li Yunqiao,
Gong Jingjing,
Zhu Yizhang,
Jin Yan,
Yin Yuxin
Publication year - 2021
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.15252/embj.2020105806
Subject(s) - pten , biology , filopodia , cancer research , metastasis , carcinogenesis , tumor suppressor gene , microbiology and biotechnology , pi3k/akt/mtor pathway , cell , gene , cancer , genetics , signal transduction
Abstract PTEN is one of the most frequently mutated genes in malignancies and acts as a powerful tumor suppressor. Tumorigenesis is involved in multiple and complex processes including initiation, invasion, and metastasis. The complexity of PTEN function is partially attributed to PTEN family members such as PTENα and PTENβ. Here, we report the identification of PTENε (also named as PTEN5), a novel N‐terminal‐extended PTEN isoform that suppresses tumor invasion and metastasis. We show that the translation of PTENε/PTEN5 is initiated from the CUG 816 codon within the 5′UTR region of PTEN mRNA. PTENε/PTEN5 mainly localizes in the cell membrane and physically associates with and dephosphorylates VASP and ACTR2, which govern filopodia formation and cell motility. We found that endogenous depletion of PTENε/PTEN5 promotes filopodia formation and enhances the metastasis capacity of tumor cells. Overall, we identify a new isoform of PTEN with distinct subcellular localization and molecular function compared to the known members of the PTEN family. These findings advance our current understanding of the importance and diversity of PTEN functions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here