Premium
Mitochondrial Safeguard: a stress response that offsets extreme fusion and protects respiratory function via flickering‐induced Oma1 activation
Author(s) -
Murata Daisuke,
Yamada Tatsuya,
Tokuyama Takeshi,
Arai Kenta,
Quirós Pedro M,
LópezOtín Carlos,
Iijima Miho,
Sesaki Hiromi
Publication year - 2020
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.15252/embj.2020105074
Subject(s) - biology , microbiology and biotechnology , oxidative stress , function (biology) , mitochondrion , mitochondrial fusion , genetics , mitochondrial dna , biochemistry , gene
The connectivity of mitochondria is regulated by a balance between fusion and division. Many human diseases are associated with excessive mitochondrial connectivity due to impaired Drp1, a dynamin‐related GTPase that mediates division. Here, we report a mitochondrial stress response, named mitochondrial safeguard, that adjusts the balance of fusion and division in response to increased mitochondrial connectivity. In cells lacking Drp1, mitochondria undergo hyperfusion. However, hyperfusion does not completely connect mitochondria because Opa1 and mitofusin 1, two other dynamin‐related GTPases that mediate fusion, become proteolytically inactivated. Pharmacological and genetic experiments show that the activity of Oma1, a metalloprotease that cleaves Opa1, is regulated by short pulses of the membrane depolarization without affecting the overall membrane potential in Drp1‐knockout cells. Re‐activation of Opa1 and Mitofusin 1 in Drp1‐knockout cells further connects mitochondria beyond hyperfusion, termed extreme fusion, leading to bioenergetic deficits. These findings reveal an unforeseen safeguard mechanism that prevents extreme fusion of mitochondria, thereby maintaining mitochondrial function when the balance is shifted to excessive connectivity.