z-logo
Premium
Coordinated removal of repressive epigenetic modifications during induced reversal of cell identity
Author(s) -
Tran Khoa A,
Dillingham Caleb M,
Sridharan Rupa
Publication year - 2019
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.15252/embj.2019101681
Subject(s) - biology , epigenetics , genetics , identity (music) , epigenesis , microbiology and biotechnology , computational biology , dna methylation , gene , gene expression , physics , acoustics
Epigenetic modifications operate in concert to maintain cell identity, yet how these interconnected networks suppress alternative cell fates remains unknown. Here, we uncover a link between the removal of repressive histone H3K9 methylation and DNA methylation during the reprogramming of somatic cells to pluripotency. The H3K9me2 demethylase, Kdm3b, transcriptionally controls DNA hydroxymethylase Tet1 expression. Unexpectedly, in the absence of Kdm3b, loci that must be DNA demethylated are trapped in an intermediate hydroxymethylated (5hmC) state and do not resolve to unmethylated cytosine. Ectopic 5hmC trapping precludes the chromatin association of master pluripotency factor, POU 5F1, and pluripotent gene activation. Increased Tet1 expression is important for the later intermediates of the reprogramming process. Taken together, coordinated removal of distinct chromatin modifications appears to be an important mechanism for altering cell identity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here