Premium
Lateral plasma membrane compartmentalization links protein function and turnover
Author(s) -
Busto Jon V,
Elting Annegret,
Haase Daniel,
Spira Felix,
Kuhlman Julian,
SchäferHerte Marco,
WedlichSöldner Roland
Publication year - 2018
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.15252/embj.201899473
Subject(s) - biology , compartmentalization (fire protection) , microbiology and biotechnology , protein turnover , function (biology) , transport protein , membrane protein , membrane , biochemistry , protein biosynthesis , enzyme
Abstract Biological membranes organize their proteins and lipids into nano‐ and microscale patterns. In the yeast plasma membrane ( PM ), constituents segregate into a large number of distinct domains. However, whether and how this intricate patchwork contributes to biological functions at the PM is still poorly understood. Here, we reveal an elaborate interplay between PM compartmentalization, physiological function, and endocytic turnover. Using the methionine permease Mup1 as model system, we demonstrate that this transporter segregates into PM clusters. Clustering requires sphingolipids, the tetraspanner protein Nce102, and signaling through TORC 2. Importantly, we show that during substrate transport, a simple conformational change in Mup1 mediates rapid relocation into a unique disperse network at the PM . Clustered Mup1 is protected from turnover, whereas relocated Mup1 actively recruits the endocytic machinery thereby initiating its own turnover. Our findings suggest that lateral compartmentalization provides an important regulatory link between function and turnover of PM proteins.