z-logo
Premium
Transnuclear mice reveal Peyer's patch iNKT cells that regulate B‐cell class switching to IgG1
Author(s) -
ClancyThompson Eleanor,
Chen Gui Zhen,
LaMarche Nelson M,
Ali Lestat R,
Jeong HeeJin,
Crowley Stephanie J,
Boelaars Kelly,
Brenner Michael B,
Lynch Lydia,
Dougan Stephanie K
Publication year - 2019
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.15252/embj.2018101260
Subject(s) - medicine , cancer , gerontology , library science , computer science
Tissue‐resident iNKT cells maintain tissue homeostasis and peripheral surveillance against pathogens; however, studying these cells is challenging due to their low abundance and poor recovery from tissues. We here show that iNKT transnuclear mice, generated by somatic cell nuclear transfer, have increased tissue resident iNKT cells. We examined expression of PLZF, T‐bet, and RORγt, as well as cytokine/chemokine profiles, and found that both monoclonal and polyclonal iNKT cells differentiated into functional subsets that faithfully replicated those seen in wild‐type mice. We detected iNKT cells from tissues in which they are rare, including adipose, lung, skin‐draining lymph nodes, and a previously undescribed population in Peyer's patches (PP). PP‐NKT cells produce the majority of the IL‐4 in Peyer's patches and provide indirect help for B‐cell class switching to IgG1 in both transnuclear and wild‐type mice. Oral vaccination with α‐galactosylceramide shows enhanced fecal IgG1 titers in iNKT cell‐sufficient mice. Transcriptional profiling reveals a unique signature of PP‐NKT cells, characterized by tissue residency. We thus define PP‐NKT as potentially important for surveillance for mucosal pathogens.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here