z-logo
Premium
A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture
Author(s) -
Gassler Johanna,
Brandão Hugo B,
Imakaev Maxim,
Flyamer Ilya M,
Ladstätter Sabrina,
Bickmore Wendy A,
Peters JanMichael,
Mirny Leonid A,
Tachibana Kikuë
Publication year - 2017
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.15252/embj.201798083
Subject(s) - cohesin , chromatin , biology , processivity , zygote , microbiology and biotechnology , genetics , genome , maternal to zygotic transition , embryo , epigenetics , dna , dna replication , embryogenesis , gene
Abstract Fertilization triggers assembly of higher‐order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single‐nucleus Hi‐C (snHi‐C), but not bulk Hi‐C. It is therefore unclear when and how embryonic chromatin conformations are assembled. Here, we investigated whether a mechanism of cohesin‐dependent loop extrusion generates higher‐order chromatin structures within the one‐cell embryo. Using snHi‐C of mouse knockout embryos, we demonstrate that the zygotic genome folds into loops and domains that critically depend on Scc1‐cohesin and that are regulated in size and linear density by Wapl. Remarkably, we discovered distinct effects on maternal and paternal chromatin loop sizes, likely reflecting differences in loop extrusion dynamics and epigenetic reprogramming. Dynamic polymer models of chromosomes reproduce changes in snHi‐C, suggesting a mechanism where cohesin locally compacts chromatin by active loop extrusion, whose processivity is controlled by Wapl. Our simulations and experimental data provide evidence that cohesin‐dependent loop extrusion organizes mammalian genomes over multiple scales from the one‐cell embryo onward.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here