
Muscle Activation of the Elbow Flexor and Extensor Muscles During Self-Resistance Exercises
Author(s) -
Virgile Serrau,
Tarak Driss,
Henry Vandewalle,
David G. Behm,
Ethelle Lesne-Chabran,
Armande Le Pellec-Muller
Publication year - 2012
Publication title -
journal of strength and conditioning research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.569
H-Index - 128
eISSN - 1533-4287
pISSN - 1064-8011
DOI - 10.1519/jsc.0b013e31823bc0a2
Subject(s) - isometric exercise , biceps , brachioradialis , medicine , elbow , elbow flexion , electromyography , flexor muscles , physical medicine and rehabilitation , anatomy , physical therapy
Muscle activation during self-resistance exercises was studied in 18 subjects performing (a) maximal unilateral isometric cocontractions of flexor and extensor muscles of the right elbow (UNI); (b) bilateral exercises consisting of maximal isometric extensions of the right elbow against the left elbow flexors (BiExt) and maximal isometric flexion of the right elbow against the left elbow extensors (BiFlex). Force production by the biceps brachii (BB), brachioradialis (BR), and triceps brachii (TB) during UNI, BiFlex, and BiExt were estimated by comparing the integrated surface electromyograms (iEMG) of BB, BR, and TB during UNI, BiExt, and BiFlex with the individual iEMG-force relationship determined from isometric contractions at 30, 60, and 100% maximal voluntary contraction during elbow flexion (MVCflex) or extension (MVCext) against a force transducer. During BiFlex for BB or BR and BiExt for TB, the values (mean ± SE) of BB-iEMG, BR-iEMG, and TB-iEMG were 74.0 ± 4.5, 76.6 ± 5.7, and 84.4 ± 4.5% iEMG at MVC (% iEMGmax). The forces were 86.0 ± 3.7% TB-Forcemax during BiExt, 74.1 ± 3.6% BB-Forcemax and 71.8 ± 4.0% BR-Forcemax during BiFlex. During UNI, BB-iEMG, BR-iEMG, and TB-iEMG were 59.9 ± 4.6, 53.4 ± 4.0, and 66.3 ± 4.7% iEMGmax, respectively. The forces during UNI (70.4 ± 4.0% TB-Forcemax, 60.4 ± 4.3% BB-Forcemax, and 49.2 ± 3.1% BR-Forcemax) were significantly lower than those during bilateral exercises. A 2-way analysis of variance (Muscle × Exercise) indicated that the effects of Muscle and Exercise upon % iEMGmax were significant (p < 0.05; p < 0.001, respectively). In conclusion, bilateral opposition exercises should be more effective in developing strength than cocontraction exercises, which correspond to a moderate activation level even for weak agonist muscle groups.