z-logo
open-access-imgOpen Access
Upper-Body Resistance Exercise Reduces Time to Recover After a High-Volume Bench Press Protocol in Resistance-Trained Men
Author(s) -
Sandro Bartolomei,
Valentina Totti,
Francesco Griggio,
Consuelo Malerba,
Simone Ciacci,
Gabriele Semprini,
Rocco Di Michele
Publication year - 2021
Publication title -
journal of strength and conditioning research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.569
H-Index - 128
eISSN - 1533-4287
pISSN - 1064-8011
DOI - 10.1519/jsc.0000000000002960
Subject(s) - bench press , resistance training , volume (thermodynamics) , isometric exercise , medicine , leg press , anaerobic exercise , zoology , physical therapy , biology , quantum mechanics , physics
Bartolomei, S, Totti, V, Griggio, F, Malerba, C, Ciacci, S, Semprini, G, and Di Michele, R. Upper-body resistance exercise reduces time to recover after a high-volume bench press protocol in resistance-trained men. J Strength Cond Res 35(2S): S180-S187, 2021-The aim of this study was to compare the effects of active and passive strategies on the recovery response after a high-volume bench press protocol. Twenty-five resistance-trained men (mean ± SD: age = 25.8 ± 3.6 years; body mass = 87.1 ± 12.1 kg; and height = 177.4 ± 4.9 cm) performed a high-volume bench press session (8 sets of 10 reps at 70% of 1 repetition maximum). Subsequently, they were randomly assigned to an active recovery (AR) group (n = 11) or to a passive recovery (PR) group (n = 14). Active recovery consisted of light bench press sessions performed 6 hours and 30 hours after the high-volume exercise protocol. Muscle performance (bench throw power [BTP] and isometric bench press [IBP]) and morphology (muscle thickness of pectoralis major [PECMT] and of triceps brachii [TRMT]) were measured before exercise (baseline [BL]), and at 15-minute (15P), 24-hour (24P), and 48-hour (48P) post-exercise. Post-exercise recovery of both maximal strength and power was accelerated in AR compared with PR. Both BTP and IBP were significantly (p < 0.001) reduced at 15P and 24P in PR, whereas changes were significant (p < 0.001) at 15P only in AR. PECMT was still significantly (p = 0.015) altered from BL at 48P in PR, whereas changes were significant (p < 0.001) at 15P only in AR. No significant interactions (p > 0.05) between PR and AR were detected for TRMT and muscle soreness. The present results indicate that AR enhances the recovery rate after high-volume exercise sessions and may be included in resistance training programs to optimize muscle adaptations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here