Research Library

open-access-imgOpen AccessMultifunctional all-dielectric quarter-wave plate metasurfaces for generating focused vector beams of Bell-like states
Author(s)
Cui Guosen,
Gu Manna,
Cheng Chen,
Zhang Ziheng,
Zhou Yuxiang,
Dong Qingrui,
Gao Song,
Choi Duk-Yong,
Cheng Chuanfu,
Liu Chunxiang
Publication year2024
Publication title
nanophotonics
Resource typeJournals
PublisherDe Gruyter
The generation of vector beams using metasurfaces is crucial for the manipulation of light fields and has significant application potential, ranging from classical physics to quantum science. This paper introduces a novel dielectric metasurface composed of quarter-wave plate (QWP) meta-atoms, known as a QWP metasurface, designed to generate focused vector beams (VBs) of Bell-like states under right circularly polarized illumination. The propagation phase imparted on both the co- and cross-polarized components of the output field constructs hyperbolic and helical phase profiles with topological charge lp , whereas the Pancharatnam–Berry (PB) phase acts only on the cross-polarized component to construct another helical phase profile with topological charge lg . Thus, the co- and cross-polarized components form two orthogonal vector vortex (VV) modes with topological charges lp and lp + lg , respectively. When the parameter conditions are satisfied by matching the incident polarization chirality σ and topological charges lp and lg , the focused VBs of Bell-like states are generated by simultaneously manipulating the two VV modes, in contrast to existing QWP metasurfaces. The polarization states of the generated VBs are manipulated using the initial orientation angle θ 0 of the meta-atom. Overall, this research provides an innovative strategy for metasurface design, enhancing the functionality of metasurface devices for a broader range of application scenarios.
Keyword(s)vector beams, metasurfaces, quarter-wave plates, light field manipulation
Language(s)English
SCImago Journal Rank2.717
H-Index61
eISSN2192-8614
pISSN2192-8606
DOI10.1515/nanoph-2023-0923

Seeing content that should not be on Zendy? Contact us.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here