z-logo
open-access-imgOpen Access
Brachial artery blood flow dynamics during sinusoidal leg cycling exercise in humans
Author(s) -
Fukuba Yoshiyuki,
Endo Masako Y,
Kondo Ayaka,
Kikugawa Yuka,
Miura Kohei,
Kashima Hideaki,
Fujimoto Masaki,
Hayashi Naoyuki,
Fukuoka Yoshiyuki,
Koga Shunsaku
Publication year - 2017
Publication title -
physiological reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.918
H-Index - 39
ISSN - 2051-817X
DOI - 10.14814/phy2.13456
Subject(s) - forearm , brachial artery , heart rate , cycling , blood flow , cardiology , medicine , blood pressure , anatomy , history , archaeology
To explore the control of the peripheral circulation of a nonworking upper limb during leg cycling exercise, blood flow ( BF ) dynamics in the brachial artery ( BA ) were determined using a sinusoidal work rate ( WR ) exercise. Ten healthy subjects performed upright leg cycling exercise at a constant WR for 30 min, followed by 16 min of sinusoidal WR consisting of 4‐min periods of WR fluctuating between a minimum output of 20 W and a maximum output corresponding to ventilatory threshold ( VT ). Throughout the protocol, pulmonary gas exchange, heart rate ( HR ), mean arterial blood pressure ( MAP ), blood velocity ( BV ), and cross‐sectional area of the BA , forearm skin BF ( SBF ), and sweating rate ( SR ) were measured. Each variable was fitted to a sinusoidal model with phase shift ( θ ) and amplitude (A). Nearly all variables closely fit a sinusoidal model. Variables relating to oxygen transport, such as V O 2 and HR , followed the sinusoidal WR pattern with certain delays ( θ : V O 2 ; 51.4 ± 4.0°, HR ; 41.8 ± 5.4°, mean ±  SD ). Conversely, BF response in the BA was approximately in antiphase (175.1 ± 28.9°) with a relatively large A, whereas the phase of forearm SBF was dissimilar (65.8 ± 35.9°). Thus, the change of BF through a conduit artery to the nonworking upper limb appears to be the reverse when WR fluctuates during sinusoidal leg exercise, and it appears unlikely that this could be ascribed exclusively to altering the downstream circulation to forearm skin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here