z-logo
open-access-imgOpen Access
Intermittent heat exposure and thirst in rats
Author(s) -
Barney Christopher C.,
Kuhrt David M.
Publication year - 2016
Publication title -
physiological reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.918
H-Index - 39
ISSN - 2051-817X
DOI - 10.14814/phy2.12767
Subject(s) - thirst , water intake , sed , hypertonic saline , thermoregulation , endocrinology , medicine , chemistry , zoology , biology
Adequate water intake, supporting both cardiovascular function and evaporative cooling, is a critical factor in mitigating the effects of heat waves, which are expected to increase with global warming. However, the regulation of water intake during periods of intermittent heat exposure is not well understood. In this study, the effects of access to water or no access during intermittent heat exposure were assessed using male Sprague‐Dawley rats exposed to 37.5°C for 4 h/day. After 7 days of intermittent heat exposure, reductions in evaporative water loss were observed in all animals and reductions in water intake following heat exposure occurred as the days of heat exposure increased. Rats that were not allowed water during the 7 days of exposure had decreased rehydration levels, however, rats allowed access to water increased water intake during exposure and exhibited higher overall rehydration levels over the same time period. Peripheral administration of angiotensin II , mimicking activation of volemic thirst, or hypertonic saline solution, activating intracellular thirst, did not result in alteration of water intake in rats exposed to heat with access to water compared to control rats. In contrast, rats exposed to heat without access to water had reduced water intake after administration of hypertonic saline and increased water intake after administration of angiotensin II compared to control rats. These experiments demonstrate that thirst responses to intermittent heat exposure are altered by providing water during heat exposure and that intermittent heat exposure without access to water alters drinking responses to both intracellular and extracellular thirst challenges.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here