
Influence of the reaction time on the quality (physical-chemical properties) of biofuels obtained through catalytic cracking of crude palm oil
Author(s) -
Sílvio Alex Pereira da Mota,
A. A. Mancio,
Jhuliana Silva Santanna,
Valtiane de Jesus Pantoja da Gama,
Nélio Teixeira Machado
Publication year - 2021
Publication title -
scientia plena
Language(s) - English
Resource type - Journals
ISSN - 1808-2793
DOI - 10.14808/sci.plena.2021.064201
Subject(s) - catalysis , flash point , biofuel , cracking , fluid catalytic cracking , chemistry , saponification value , chemical engineering , diesel fuel , iodine value , materials science , pulp and paper industry , organic chemistry , waste management , engineering
The present paper investigated the influence of the reaction time on the quality (physical-chemical properties) of biofuels obtained by catalytic cracking of crude palm oil (CPO). The influence of the reaction time (10, 20, 30, 40, 50, and 60 min) on the quality of crude biofuels denominated organic liquid products (OLP) was investigated through experiments carried out in a cracking pilot plant with capacity of 143 L in the following operating conditions: 20 wt% sodium carbonate (Na2CO3) as catalyst, 450 °C, 1 atm and batch mode operation. The quality of the biofuels produced was certified through physical-chemical analyzes (acid value, saponification value, specific gravity, refractive index, kinematic viscosity, corrosiveness to copper, and flash point). The results show that the physical-chemical properties of OLP decrease as the reaction time increases, in such a way that, catalytic cracking process occurs efficiently in the interval of 10 to 20 min after its start, which can be finalized when it reaches 30 minutes of reaction. In addition, Na2CO3 was essential as a catalyst in the cracking reaction to reduce the physical-chemical properties of OLPs obtained at different times, allowing the specific gravity, kinematic viscosity and corrosivity to copper to be within or very close to the limits established for Diesel S10.