z-logo
open-access-imgOpen Access
Toxicity response of Chlorella microalgae to glyphosate herbicide exposure based on biomass, pigment contents and photosynthetic efficiency
Author(s) -
Somruthai Kaeoboon,
Rungcharn Suksungworn,
Nuttha Sanevas
Publication year - 2021
Publication title -
plant science today
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.204
H-Index - 6
ISSN - 2348-1900
DOI - 10.14719/pst.2021.8.2.1068
Subject(s) - glyphosate , chlorella vulgaris , chlorella sorokiniana , photosynthesis , photosynthetic efficiency , toxicity , photosynthetic pigment , biology , biomass (ecology) , botany , pigment , chlorella , algae , chemistry , agronomy , organic chemistry
The extensive use of glyphosate (N-(phosphonomethyl) glycine) herbicide in agriculture is accompanied by the risk of environmental contamination of aquatic ecosystems. In this study, the effects of glyphosate at different concentrations (50–500 µg ml-1) on three Chlorella species including Chlorella ellipsoidea, Chlorella sorokiniana and Chlorella vulgaris especially in relation to the biomass, pigment contents and photosynthetic efficiency were assessed. After treatment for 24 hr, the acute toxicity results showed that C. vulgaris (IC50 = 449.34 ± 6.20 µg ml-1) was more tolerant to glyphosate than C. ellipsoidea (IC50 = 288.23 ± 23.53 µg ml-1) and C. sorokiniana (IC50 = 174.28 ± 0.50 µg ml-1). After a 72-hr chronic toxicity treatment with glyphosate, glyphosate concentrations decreased to 400–500 µg ml-1 in C. ellipsoidea, 200–300 µg ml-1 in C. sorokiniana and 200–500 µg ml-1 in C. vulgaris respectively. During 24-hr acute toxicity exposure to glyphosate, the pigment contents and maximum quantum efficiency of photosystem II (Fv/Fm) decreased as the concentration of glyphosate increased. Overall, the biomass, pigment contents and photosynthetic efficiency presented a high positive correlation. It is worthwhile to mention that our study provides detailed information on the toxicity and sensitivity of these Chlorella species to glyphosate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here