z-logo
open-access-imgOpen Access
Metagenomic insights into plant growth promoting genes inherent in bacterial endophytes of Emilia sonchifolia (Linn.) DC
Author(s) -
Sithara K. Urumbil,
M. Anilkumar
Publication year - 2021
Publication title -
plant science today
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.204
H-Index - 6
ISSN - 2348-1900
DOI - 10.14719/pst.1357
Subject(s) - biology , metagenomics , siderophore , microbiome , nitrite reductase , kegg , endophyte , gene , botany , microbiology and biotechnology , nitrate reductase , genetics , biochemistry , transcriptome , enzyme , gene expression
Studies on the genome of endophytes reveal the metabolic potential of endophytic microbiome including both culturable and unculturable fractions. The metagenome analysis through the Illumina HiSeq platform gives access to the genetic data encrypted for the molecular machinery, which takes part in plant growth promotion activity of the endophyte in various aspects including production of plant growth hormones and enhancing nutrient availability for the host plant. The present work was undertaken to identify the genes involved in plant growth promotion activities from the endophytes of Emilia sonchifolia(Linn.) DC. through metagenome analysis. Metagenomic studies include the analysis of functional annotations which aid in the detection of biocatalysts taking part in the metabolic pathway of host plants. The annotations of expressed genes in different databases like NCBI Nr, KEGG, eggnog and CAZy resulted in enlisting the vast array of information on the genetic diversity of the endophytic microbiome. The metagenome analysis of endophytic bacteria from the medicinal plant E.sonchifolia unveiled characteristic functional genes involved in plant growth promotion such as nitrogen metabolism (nif) and siderophore production (enterobactin category), ipdC and tnaA (IAA producing), ACC deaminase coding genes (regulation of elevated ethylene levels in host tissues), Mo-Nitrogenase, nitrous-oxide reductase (nosZ), nitrate reductase (narG, napA), nitrite reductase (nirD) (nutrient assimilation and absorption) enterobactin siderophore synthetase components F and D and acid phosphatase genes. This clearly explains the effective plant-microbe relationship and the role of bacterial endophytic microbes in regulating the growth of host plants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here