z-logo
open-access-imgOpen Access
Physicochemical characterization of C-phycocyanin from Plectonema sp. and elucidation of its bioactive potential through in silico approach
Author(s) -
Arbab Husain,
Alvina Farooqui,
Afreen Khanam,
S.C. Sharma,
Sadaf Mahfooz,
Arshiya Shamim,
Firoz Akhter,
Abdulrahman A. Alatar,
Mohammad Faisal,
Saheem Ahmad
Publication year - 2022
Publication title -
cellular and molecular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 71
eISSN - 1165-158X
pISSN - 0145-5680
DOI - 10.14715/cmb/2021.67.4.8
Subject(s) - chemistry , circular dichroism , chromatography , high performance liquid chromatography , fourier transform infrared spectroscopy , analytical chemistry (journal) , nuclear chemistry , crystallography , physics , quantum mechanics
C-phycocyanin (C-PC), the integral blue-green algae (BGA) constituent has been substantially delineated for its biological attributes. Numerous reports have illustrated differential extraction and purification techniques for C-PC, however, there exists paucity in a broadly accepted process of its isolation. In the present study, we reported a highly selective C-PC purification and characterization method from nontoxic, filamentous and non-heterocystous cyanobacterium Plectonema sp. C-PC was extracted by freeze-thawing, desalted and purified using ion-exchange chromatography. The purity of C-PC along with its concentration was found to be 4.12 and 245 µg/ml respectively.  Comparative characterization of standard and purified C-PC was performed using diverse spectroscopic techniques namely Ultra Violet-visible, fluorescence spectroscopy and Fourier transform infrared (FT-IR). Sharp peaks at 620 nm and 350 nm with UV-visible and FT-IR spectroscopy respectively, confirmed amide I bands at around 1638 cm-1 (C=O stretching) whereas circular dichroism (CD) spectra exhibited α-helix content of secondary structure of standard 80.59% and 84.59% of column purified C-PC. SDS-PAGE exhibited two bands of α and β subunits 17 and 19 kDa respectively. HPLC evaluation of purified C-PC also indicated a close resemblance of retention peak time (1.465 min, 1.234 min, 1.097 min and 0.905 min) with standard C-PC having retention peak timing of 1.448 min, 1.233 min and 0.925 min. As a cautious approach, the purified C-PC was further lyophilized to extend its shelf life as compared to its liquid isoform. To evaluate the bioactive potential of the purified C-PC in silico approach was attempted. The molecular docking technique was carried out of C-PC as a ligand-protein with free radicals and α-amylase, α-glucosidase, glycogen synthase kinase-3 and glycogen phosphorylase enzymes as receptors to predict the free radical scavenging (antioxidant) and to target antidiabetic property of C-PC. In both receptors free radicals and enzymes, ligand C-PC plays an important role in establishing interactions within the cavity of active sites. These results established the antioxidant potential of C-PC and also give a clue towards its antidiabetic potential warranting further research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here