
Tripeptides from Allium subhirsitum L. extracts: Pharmacokinetics properties, toxicity prediction and in silico study against SARS-CoV-2 enzymes and pro-inflammatory proteins
Author(s) -
Mejdi Snoussi,
Emira Noumi,
Ahmed Mosbah,
Alaeddine Redissi,
Mοhd Saeed,
Munazzah Tasleem,
Mousa Alreshidi,
Mohd Adnan,
Ayshah Aysh ALrashidi,
Arif Jamal Siddiqui,
Kaïss Aouadi,
Vincenzo De Feo,
Adel Kadri
Publication year - 2022
Publication title -
cellular and molecular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 71
eISSN - 1165-158X
pISSN - 0145-5680
DOI - 10.14715/cmb/2021.67.4.17
Subject(s) - in silico , pharmacokinetics , toxicity , tripeptide , enzyme , chemistry , pharmacology , covid-19 , biochemistry , biology , peptide , medicine , disease , pathology , gene , organic chemistry , infectious disease (medical specialty)
Developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities is urgently needed to combat emerging human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since no available clinically antiviral drugs have been approved to eradicate COVID-19 as of the writing of this report, this study aimed to investigate bioactive short peptides from Allium subhirsutum L. (Hairy garlic) extracts identified through HR-LC/MS analysis that could potentially hinder the multiplication cycle of SARS-CoV-2 via molecular docking study. The obtained promising results showed that the peptides (Asn-Asn-Asn) possess the highest binding affinities of -8.4 kcal/mol against S protein, (His-Phe-Gln) of -9.8 kcal/mol and (Gln-His-Phe) of -9.7 kcal/mol towards hACE2, (Thr-Leu-Trp) of -10.3 kcal/mol and (Gln-Phe-Tyr) of -9.8 kcal/mol against furin. Additionally, the identified peptides show strong interactions with the targeted and pro-inflammatory ranging from -8.1 to -10.5 kcal/mol for NF−κB-inducing kinase (NIK), from -8.2 to -10 kcal/mol for phospholipase A2 (PLA2), from -8.0 to -10.7 kcal/mol for interleukin-1 receptor-associated kinase 4 (IRAK-4), and from -8.6 to -11.6 kcal/mol for the cyclooxygenase 2 (COX2) with Gln-Phe-Tyr model seems to be the most prominent. Results from pharmacophore, drug-likeness and ADMET prediction analyses clearly evidenced the usability of the peptides to be developed as an effective drug, beneficial for COVID-19 treatment.