z-logo
open-access-imgOpen Access
Ginkgetin inhibits proliferation of HeLa cells via activation of p38/NF-κB pathway
Author(s) -
Jiongjia Cheng,
Yun Li,
Jianping Kong
Publication year - 2019
Publication title -
cellular and molecular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.371
H-Index - 71
eISSN - 1165-158X
pISSN - 0145-5680
DOI - 10.14715/cmb/2019.65.4.13
Subject(s) - hela , p38 mitogen activated protein kinases , fetal bovine serum , microbiology and biotechnology , mtt assay , tumor necrosis factor alpha , cell growth , blot , mapk/erk pathway , cell culture , kinase , biology , cell , chemistry , immunology , biochemistry , genetics , gene
Effect of ginkgetin on proliferation of human cervical cancer (HeLa) cells and the underlying mechanism   were investigated. Human cervical cancer (HeLa) cells were cultured at 37 °C in 10 % fetal bovine serum (FBS) supplemented RPMI 1640 medium in a humidified incubator containing 5 % CO2. Cell proliferation was determined using MTT assay, while real-time quantitative polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to determine the levels of expression of interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin 8 (IL-8). The expressions of p38 mitogen-activated protein kinases (p38 MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κB) were determined using Western blotting. Treatment of HeLa cells with ginkgetin significantly and time- and dose-dependently inhibited their proliferation (p 0.05). The results of qRT-PCR and ELISA showed that the levels of expression of TNF-α, IL-1β and IL-8 mRNAs were significantly and dose-dependently reduced in HeLa cells after 48 h of treatment with ginkgetin, when compared with the control group (p < 0.05). The anti-proliferative effect of ginkgetin on HeLa cells is exerted via a mechanism involving the p38/NF-κB pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here