
Identifikasi Jenis Bambu Berdasarkan Tekstur Daun dengan Metode Gray Level Co-Occurrence Matrix dan Gray Level Run Length Matrix
Author(s) -
Endina Putri Purwandari,
Rachmi Ulizah Hasibuan,
Desi Andreswari
Publication year - 2018
Publication title -
jurnal teknologi dan sistem komputer
Language(s) - English
Resource type - Journals
eISSN - 2620-4002
pISSN - 2338-0403
DOI - 10.14710/jtsiskom.6.4.2018.146-151
Subject(s) - bamboo , bambusa , gray level , mathematics , artificial intelligence , botany , computer science , biology , pixel
Bamboo species can be identified from the bamboo leaf images. This study conducted the identification of bamboo species based on leaf texture using Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM) for texture feature extraction, and Euclidean distance for measure the image distance. This study used the images of bamboo species in Bengkulu province, that are bambusa Vulgaris Var Vulgaris, bambusa Multiplex, bambusa Vulgaris Var Striata, Gigantochloa Robusta, Gigantochloa Schortrchinii, Gigantochloa Serik, Schizostachyum Brachycladum, and Dendrocalamus Asper. The bamboo application was built using Matlab. The accuracy of the application was 100% for bamboo leaf test images captured using a smartphone camera and 81.25% for test images downloaded from the Internet.