
Prediction of the Academic Achievement of Pupils Using Data Mining Techniques
Author(s) -
Mokhalad Eesee Khudhur,
Mohammed Shihab Ahmed,
Saif Muhannad Maher
Publication year - 2021
Publication title -
webology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.259
H-Index - 18
ISSN - 1735-188X
DOI - 10.14704/web/v18i2/web18394
Subject(s) - graduation (instrument) , academic achievement , computer science , educational data mining , mathematics education , viewpoints , machine learning , logistic regression , drop out , sample (material) , decision tree , artificial intelligence , psychology , mathematics , geometry , art , chemistry , chromatography , economics , demographic economics , visual arts
During this epidemic, a problem in fundamental education affecting all globe is occurring, and we note that education and learning were online and conducted in students. Academic performance of students must be forecast, so that the instructor may better identify the missing pupils and offer teachers a proactive opportunity to develop additional resources for the student to maximize their chances of graduation. Students' academic achievement in higher learning (EH) has been extensively studied in addressing academic inadequacies, rising drop-out rates, graduation delays, and other difficult questions. Simply said, the performance of students refers to the amount to which short and long-term educational objectives are met. Academics nonetheless judge student achievement from different viewpoints, from grades, average grade points (GPAs) to prospective jobs. The literature encompasses numerous computing attempts to improve student performance in schools and colleges, primarily through data mining and analysis learning. However, the efficiency of current smart techniques and models is still unanimous. Method: This study employs multiple methods for machine learning to forecast student progress. With its accurate data sample prediction, five integrated classification algorithms have been created to forecast students' academic success (support vectors, decision-making trees algorithm and perceptron algorithm, logistic regression algorithm and a random forest algorithm). Results: Students' academic achievement has been reviewed and assessed. The performance of five learning machines mentioned in Section 4 is discussed here. First, we displayed the data after pre-processing by simply displaying distributions to form the data packet and then evaluated 5 important learning methods and described the variables in the data set. The entire series of 480 characteristics were examined.